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THE SPATIAL CONTACT PROBLEM FOR AN ELASTIC
WEDGE WITH UNKNOWN CONTACT AREAf

D. A. POZHARSKII
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(Received 22 June 1994)

The contact problem of the indentation of an elliptic paraboloid into one side of a spatial wedge, the other side of which is free
from stresses, is investigated without introducing any limitations on the remoteness of the punch from the edge of the wedge
and on the aperture angle of the wedge. In the case when the punch approaches close to the edge, the method of non-linear
boundary equations of the Hammerstein type is used [1, 2], which enables the normal contact pressures and the unknown contact
area to be determined simultaneously. The kernel of the integral equation of the contact problem is then regularized both outside
the edge and on the edge of the wedge. The solution obtained agrees well with that obtained in [3], constructed using the asymptotic
“large A” method, which is effective when the punch is sufficiently far from the edge of the wedge, when the contact area can
be assumed to be an ellipse, and also with the exact solution of the corresponding contact problem for a half-space [4]. A numerical
analysis of the asymmetry of the contact area, the dependence of the indenting force on the settling of the punch, and the effective
stresses at the point of initial contact for different aperture angles of the wedge and two orientations of the elliptic paraboloid
with respect to the edge is carried out for values of the parameters of the problem given in [5].

The method of finite elements was used previously in [6] to investigate the contact problem for a quarter
of space for a rectangular contact area.

1. Suppose that a rigid punch whose surface is an elliptic paraboloid f(r, z) = (r— a)%/(2Ry) + 2/(2R,)
is pressed into the side ¢ = o of an elastic three-dimensional wedge with aperture angle a (r, ¢ and z
are the cylindrical coordinates and the z axis coincides with the edge of the wedge) by a force P applied
along the r axis at a distance H from the edge. Due to the action of the force P applied along the r axis
at a distance H from the edge. Due to the action of the force P the punch settles an amount 6 and
rotates through an angle y about the straight line » = a. Outside the contact area there is no load on
the side @ = o. We neglect the friction forces between the wedge and the punch. The side ¢ = 0 is
assumed to be stress-free. It is required to determine, for specified values of §, ¥, a, R, R;, the contact
area Q, the distribution function of the normal contact stresses oy(p, @, 2) = —~q(r, 2) ((, z) € Q), and
also the quantities P and H.

We will assume that the area Q is completely contained within a rectangle S with centre on the r axis
and semiaxes b and ¢ (b = ¢). The integral equation and inequality, to which the solution of this problem
can be reduced, have the form [1, 3] (where G is the shear modulus and v is Poisson’s ratio)

eiK(M,N)q(N)dQN:g(M); gqM)=0, MeQ

OJK(M.N)(Ndy > gM); g(M)=0. M <(5\ ) D
M=(r,2), N=(x,y), 0=(1-v)/G, g(r,2)=21(8+Y(r—a)-f(r,2))
K(r.2.x,0)=1/R+F(r,z,x,y), R=(r—x)* +(z-y)*
F(r,z,x,y)=f—z-zz{shnu(W(u)—cthnu)Kiu(Bx)+

+5h AW, (0)F, (1.B0) - W BOI K (Br)cosPa - y) Bl (12)
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Ft(uyﬁx)=(1-2V)£L«_~(“,)’)[F:(y,ﬁx)+0h£22Kiy(ﬁx)]dy, 0<u<°° (1'3)
mu . Ry T shmeg, (t)dt
,y)=2ch——sh—=W,
Ls(uy)=2¢h=Fsh=y t(y)g(ch1tt+ch1tu)(ch1tt+chny)
, chowFcosa W, (u)—W._(u) ( w)ﬂ sina
W, =t— W)=t D& cth— | —m—4m/mM—
2 () shawtusino (1) 2 8= ¢ 2 chotFcos2a

It is also assumed that a bounded region Sy = {M: g(M) > 0} exists such that Q C 5—‘0 C S. We will
introduce the non-linear operators [1, 2]

V' (M) =sup{v(M),0}, v (M)=inf[v(M),0)
and consider the operator equation

To=0 (MeS), To=pv-+6Kv" —g, p=const (1.4)
where v* = vV*(M), g = g(M) and K is an integral operator of the form

Kv* = [K(M,N)Yv* (N)dSy (1.5)
S

Theorem 1. If v, = v,(M) is the solution of Eq. (1.4), then (g = g(M) = v}, Q = {M: v, = 0}) is the
solution of Eq. (1.1), where Q # ¢ when S, = ¢; conversely, if (g, Q) is the solution of Eq. (1.1), then
v, = ug + g - 6uKgq, M € S is the solution of Eq. (1.4).

Theorem 2. For a unique solution v. € L,(S) of Eq. (1.4) to exist it is necessary and sufficient that
the function vy = vy(M), which serves as the solution of the equation (g, > 0)

0T+ +0KV =g (MeS) (1.6)

should satisfy the condition

logll,, = C, &,e(0,85), g5 =const>0

where the constant C is independent of €,.
Equation (1.6) has a solution by virtue of the principle of contractive mappings for sufficiently large
values of p [2].

Theorem 3. Suppose v1(M) and v,(M) are the solutions of Eq. (1.4) when . = ; and p. = p,, respec-

tively (1 # ). Then V(M) = v3(M).
The proofs of these three theorems, which are key theorems for the method of non-linear boundary

equations, repeat the proofs of the corresponding theorems in [1]. Here we use the fact that the integral
operator K of the form (1.5) is completely continuous, self-conjugate, strictly positive, and its kernel
K(M, N) possesses a weak singularity.

To determine the quantities P and H we must add to Eq. (1.4) the following two integral equations
of equilibrium

‘jl q(M)dQ,, =P, Arq(M)dQM =PH wn
For a numerical solution of Eq. (1.4) we will use Krasnosel’skii’s method [7], which is based on the

construction of successive approximations using the formulae

Va1 =0, —(Q0,) ' Tv,, (1.8)
v, =v,(M), n=012.., vy=g
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where Q is a differentiable operator which approximates the operator T of the form (1.4) quite well in
a uniform metric, and has the formt

gu=p(v-0Qv)+6KQuv~g

0, V< ~E;
Q= /(u -¥v?le)+%e, hiseg (1.9)

v, v>g,>0

where, by choosing the constant €;, we can endeavour to approximate the operator T with any accuracy
specified in advance.

In view of the symmetry of the problem with respect to z it is sufficient to consider solely the upper
half of the rectangle S, which we will cover with a net of m nodes with spacing /, along the r axis and
h, along the z axis (in the calculations m = 81). When calculating the values of the function K(M, N)
of the form (1.2) at these nodes its singularity outside the edge of the wedge is smoothed using the
formulae

1/R> /R, R=(r—x)?+(z-y)?+8. (1.10)

and on the edge

K(0,2,%,y) > Ay/ Ry, Ro=yx*+(z=y)* +3. (111)

A= 2a+sin2a 27
20 -sin o) nl[

xeos[uln((R0+Iz—yI)/(x+\/—8—._))]du

{W (W)F, (u)—W_(u)F_(u)}x

Fo(u)-(1 —ZV)TLi(u,y)Fi(y)dy = %(1 ~2V)L,(4,0), 0<u<o (1.12)

1¥cosa HI g () dt

s = i
Lo(w.0)=2r ots not 0 2 chnt+chnu

When deriving (1.11) and (1.12) we took into account the fact that K, (0) = nd(x) (8 is the Dirac
function). It can be shown that the regularizing parameter in (1.10)—(1.12) must be related to the net
spacings h; and A, (we assumed 8+ = Ak,/16 in the calculations).

2. If the rectangle S does not reach the edge of the wedge, we place its centre at the pointr = a, z
= ( and introduce the following dimensionless quantities and notation

r—a=r'b, x—a=x’b, z=7'b, y=y'b, 8=8', H=H’b
A=b/(2R)), B=b/(2R,), A=alb, e=c/b (2.1)

8q(r.z)=2ng"(r",z’), OP=27b*P’, §'>S, Q' —>Q

It is obvious that formulae (2.1) hold when A > € when the rectangle S is elongated along the z axis
(R; < R;) or A > 1 when it is elongated along the r axis (R; = R;). WhenA <e(Ry <Ry))orA<1(R,
= R,) we will assume that one side of the rectangle is situated on the edge of the wedge, and we will
take as its centre the point r = ¢,z = O when R; < R, or the pointr = b,z = 0 when R; = R; . In these
cases we will also use the notation (2.1), replacing the first two equations of (2.1) byr—c =rb,x—c
=x'b when R; < R, orr-b=rb,x — b = xX’b when R; = R,. We will henceforth omit the primes.

The dimensionless parameter A represents the relative remoteness of the punch from the edge of
the wedge.

+GALANOV B. A. The method of non-linear boundary equations in contact problems with unknown contact areas. Doctorate
dissertation, Kiev, 1987.
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To debug the computer program which we developed we used the following:
(a) the exact solution of the axisymmetric contact problem [8], which, whena = n,7=0,e=8=4 =B =1
(A and v can have any values) has the form

9= go1-(r/ )2 ~(2/ ¢

2.2
qo=2V217m2, ¢ =cy=1/2 @2

(b) the exact solution of the problem of the indentation of an elliptic paraboloid into a half-space [4] (o = =,
£€=05,86=17=0,4=2B =1; X and v can have any values), defined by formula (2.2) for g, = 0.348, ¢, =
0.469 and ¢, = 0.744;

(c) the solution obtained using the asymptotic “large A” method [3] (0 = 7/2,v = 03,A =2, = 05,8 = 1,
y = —0.0450, 4 = 2.19 and B = 1), which is found from (2.2) with g4 = 0.326, ¢c; = 0.422 and ¢, = 0.704.

The results of a comparison of solutions (a)—(c) at nine nodes on the r axis with the corresponding values obtained
using the computer program show that the difference in cases (a) and (b) is less than 3%, while in case (c) it does
not exceed 12%.

Values of the indenting force 10°P as a function of the settling of the punch 10°5 are given in
Table 1 for different values of a and two orientations of the punch with respect to the edge. Here
v=03,A=0,€=0157v=0and A4 = 0.005 and B = 0.1 (up to values of a = 180° inclusive) or4 =
0.1 and B = 0.005 (below the row corresponding to o = 180°); for @ = 180° we give the exact values
[4]. In view of the regularities of (1.11) and (1.12) the value A = 0 corresponds to the case when the
point at which the punch and the wedge initially touch “almost” reaches the edge. An analysis of these
results, and also of the corresponding calculations, carried out for e = 0.1 and & = 0.25 shows that when
o = 90° the value of P = P(8) as A — 0 is independent of which axes of coordinates (r or z) the elliptic
paraboloid is elongated along.

In Figs 1 and 2 the upper half of the contact areas Q are shown hatched for angles o0 = 65° (Fig. 1)
and o = 135° (Fig. 2). Here v = 0.3, &€ = 0.15, § = 0.005, vy = 0,4 = 0.1 and B = 0.005; for A = 0 the
boundary of the region Q is shown by the continuous curve, while for A = ¢ it is shown by the dashed
curve. It can be seen that for o = 65° the area of the region Q is considerably less than for o0 = 135°
(this also occurs in the case when A < B). For fairly acute angles o and A — 0 breakdown of the contact
is observed in the neighbourhood of the point where the punch and the wedge initially touch (as though
the edge withdraws), particularly when the punch is elongated along the edge (Fig. 1).

3. After solving the contact problem, knowing the function g(r, z) and the contact area Q, it is possible
to determine the effective dimensionless stress 6, = 66,/(2r), which plays an important role in
applications. As an example (in the framework of the concept of surface strength) we will determine
o, at the point where the punch and the wedge initially touch » = gy, 8 = o,z = 0 (ag = A — € when A
< eand R < R,,ap = A—1when A <1 and R; = R,, while in other cases ag = 0) from the following
formulae (we omit the primes)

- 2 2 2
6, =274((6,~0,)? +(0y ~03)? +(0, ~63)* 1" (3.1)
Table 1

a, deg 1036 = 4 45 5 55 6 6.5
65 0.116 0.141 0.167 0,194 0222 0250
90 0.210 0,255 0302 0351 0.400 0453
110 0253 0,306 0.361 0.419 0.478 0.541
135 0311 0.374 0.441 0.510 0.581 0.657
180 0,601 0717 0.840 0.969 1.10 124
135 0.440 0.527 0616 0.713 0.812 0913
110 0314 0376 0.441 0.509 0.581 0.654
90 0215 0257 0,302 0.348 0.396 0.447

65 00813 ~ 0.0967 0,113 0.131 0.150 0.168
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Fig. 2
Ju, Ju ou
= | OY; \ O¥, _ ¥ =
i 1- (ar+8z)+ or 1-v7 92="%
v (Jdu, du ou,’
=y | OY Ok Ok ¥ = ,0
% l—v[8r+az )+ oz 1 90 40=4(4.0)
ou, 0°®D, A 1-2v
= = 5+ 1~ 2
or d 4(1-v) 2(1-v)
ou, J°®P by
— % = +
% 92 a-wk

2 _ EEYey
9D _ 20 IVTTTE (pr, K. (po1)dpdide
or 4 000
0= ( 2 Ny E|(p,t,1)pK; (M)dpdtdt (3.2)
0z T 000
. ad’d o 0*d 4(1-v)==
X = in= arz’ ~cos— E)r22 == (f)(f)Ez(P,t)K:(P,t)det
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_ . 0dd o od 4(1-v)=%
Xz—smg‘a—rl’“cos‘z‘a—rz:' 2 (])!)E2(p,t)pReKl+,~,(lp)dpdt

o, 090

A1-v)%
%3 =sin> (n2V) (j)(j)Ez(P,t)pK,-,(Xp)dpdt

oS
2 92 2o

K*(p,t) = pKit()“P)"(IIm K1+it(}"p)_Re K]+,~,(7\-p))/x

shrtshmt

E(p,t,1)=———
11D chrt+chnt

[W+(1)ctha7tE+(1:, p)— w_(r)th%‘-E_(r, p)}

Ez(p,t)=_2psinocsh1tt[ E.bp) __E-(p) ]

shot+1tsina  shoz—tsino

_o.p) 1
Ei(tap)—m"'s(t,p), S(t,P)=-qu(r,z)l(i,(p(r+bo))COszdrdz

. (t,p)=(1 —ZV)ILi(t,y)[%(y,p)+chn—2yS(y.p)ildy. 0<t<eo (33)

Here o, (n = 1, 2, 3) are the principal stresses, u, and u, are the components of the displacement
vector, @, = ®,(r, ¢, z) (n = 0, 1, 2) are the functions which occur in the Papkovich-Neuber repre-
sentation [3], and by = A — ay,.

To solve the Fredholm integral equations of the second kind (3.3), and also (1.3) and (1.12) the method
of mechanical quadratures is employed using Gauss’ quadrature formula.

If we put o = & in (3.1)—(3.3) and assume that the function g(r, z) is defined in the elliptic region Q
by the relation

q(r,2)=go1-(r—ag)* / a® —2* / b2 (3.4)
we obtain the following formula [9]
6, =(1=2V)go\1-B+B* /(1+B) (35)

where B = b,/a, ifa, = b. and B = a,/b, ifa, <b,.
When deriving (3.5) we took into account the values of the integrals [10, No. 8.432.4 and No. 3.984.4]

2 =% shntshnt nT i3 T Tt
— [ { [———"— cth=—cth— + th—th—
2 (I)'!)([)chnﬁchm[c g Syt }K*(p’t)x
) d b4
XK (p(r+by))cos pzdpdidt = —| —— | _218(r— 3.6
w (p(r+by))cos pzdp pA e nd(r—ag)d(z) (3.6)

1 d z a.q
- W) d = 10
2ngq(r Z)dz[(r—a0)2+z2] rdz

In the second integral (3.6) the function gq(r, z) is defined by (3.4) and is the corresponding ellipse
with centre at the point 7 = gy, z = 0.

Table 2 shows values of the effective stresses 10°c, at the point r = ag, ¢ = o, z = 0 as a function of
1035 for different o and two orientations of the punch. Here v=03,e = 0.15,y=0,A = 035,4 =
0.005 and B = 0.1 up to values of o = 180° inclusive, or A = 0.15, 4 = 0.1 and B = 0.005 below the
row corresponding to o = 180°. When o = 180°, when the orientation of the punch and the value of
A play no role, the calculations were carried out using (3.5) in accordance with the exact solution of
the problem [4]. The calculations show that, in the region of the edge, the dependence of 6, on & and
also on A may be non-monotonic. When the elliptic paraboloid approaches the edge along its semi-
major axis, the values of ¢, are usually larger than when approaching along the semi-minor axis. It can
be seen by comparing the first and third rows of Table 2 that when o = 110° more dangerous effective
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Table 2

o, deg 1038 = 4. 45 5 55 6 6.5
65 1.08 135 133 136 133 161
% 148 145 1.70 174 171 2.06
110 148 1.70 174 1.75 1.96 1.69
135 121 144 1.44 1.74 1.31 0924
180 1.17 124 1.31 1.37 143 1.49
135 103 1.08 115 1.21 126 133
110 0.952 1.02 1,08 115 121 128
90 0.832 0.894 0.943 0.996 1.05 1.10
65 0.501 0.525 0.549 0.573 0.595 0.610

stresses occur than when o = 65°. As follows from (3.1)—(3.3), 6, — e as A — 0, provided g, # 0 when
A = 0, i.e. contact is not broken off. If as A — 0 and for fairly acute angles o contact is broken off in
the neighbourhood of the point where the punch and the wedge initially touch, we will have ¢, = 0 at
this point [11]. '

I wish to thank V. M. Aleksandrov and B. A. Galanov for discussing the method described in [1, 2].
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